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Adsorption properties of a colloid-polymer mixture confined in a slit pore
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The soft fundamental-measure theory, which was based on the additive colloid-polymer mixture@M.
Schmidt, Phys. Rev. E62, 3799~2000!# has been employed to investigate the adsorption of a colloid-polymer
mixture within a hard slit pore. The calculated results show that the adsorption for the confined colloid-polymer
mixture is very different from those of the colloid-colloid and polymer-polymer mixtures. The equilibrium
particle density distribution strongly depends on the softness of a star polymer. The local relative concentration
oscillates with a spatial period close to the diameter of a large particle in the same way as the equilibrium
particle density distribution. The size selectivity in adsorption depends both on the softness of a star polymer
and on the particle size ratio in a binary mixture. In particular, the strong adsorption occurs at the ultra-soft
polymer and high bulk packing fraction.
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I. INTRODUCTION

Over the last decade, the density functional theory of c
sical fluids has evolved into an efficient theoretical tool
studying confined fluid mixtures@1–4#. Many different kinds
of theories have been developed for dealing with proble
such as phase separation and interfacial adsorption of
tures in the confined systems@5#. For the hard-sphere mix
ture, the newest and most successful approximation is
fundamental-measure theory which was developed
Rosenfeld and co-workers@6,7#. The density functional ap
proximations for various common model fluids, within th
soft fundamental-measure theory, was proposed to study
structural properties in the fluid phase@8,10,9#. More re-
cently, Schmidt@11# proposed a soft fundamental-measu
theory for a model colloid-polymer mixture of particles in
teracting with a radially symmetric pair potential. In th
case, the cross interaction between unlike species can b
scribed by the fundamental-measure theory for the ha
sphere and star polymer. These interactions turn out to h
a physically reasonable form@12,13#. Schmidt applied it to
investigate the partial pair distribution functiongi j (r ,r) of
an additive colloid-polymer mixture, and obtained reaso
ably good results compared with the computer simulati
Furthermore, a fundamental-measure theory for a nona
tive model colloid-polymer mixture was developed b
Schmidtet al. @14#. Rosenfeldet al. @15# compared the sof
fundamental measure theory and the computer simulation
the pair correlation function in the fluid phase of penetra
spheres by using the test-particle limit. They showed that
penetrable sphere functional is quite successful.

Kim @16# recently extended the soft fundamental-meas
theory of Schmidt@11# for the polydisperse soft-sphere fluid
and applied it to study the adsorption properties of a confi
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polydisperse soft-sphere fluid. He showed that the prefe
species in a slit pore depends on the pore size and softne
a polydisperse soft-sphere fluid. The local relative concen
tion oscillates with a spatial period close to the diameter o
large particle in the same way as the equilibrium parti
density distribution. The results suggest that the pore ave
mole fraction and local relative concentration for colloid
hard spheres mixed with star polymers are affected by
softness of a star polymer. It is generally expected that
colloid-polymer mixture shows very different adsorptio
properties compared with binary mixtures such as collo
colloid and polymer-polymer mixtures, because of the so
ness of a star polymer. On the other hand, the adsorp
behavior of an open system is very different from that of t
closed system such as the spherical pore, where the num
of particlesN is fixed @17#.

This paper is arranged as follows. In Sec. II, we w
briefly summarize the soft fundamental-measure theory
the additive colloid-polymer mixture, and derive the dens
profile equation for the colloid-polymer mixture confined
a structureless hard slit pore. In Sec. III, the local relat
concentration, i.e., the local size segregation and pore a
age mole fraction, which represents the size selectivity
adsorption of the confined colloid-polymer mixtures, is stu
ied theoretically and compared with the confined collo
colloid and polymer-polymer mixtures in detail. Finally, th
pore size and particle size dependence for confined coll
polymer mixtures are also discussed.

II. THEORY

In the density functional theory for colloidal hard spher
mixed with star polymers with the particle diameters i @here
sc andsp denote the diameters of the colloidal hard sph
and the polymer, respectively#, the equilibrium particle den-
sity distribution r i(rW) of the inhomogeneous fluid is de
scribed by the minimum of the grand canonical poten
©2001 The American Physical Society07-1
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V@r# satisfying the Euler-Lagrange relatio
dbV@rc ,rp#/dr i(rW)50, where b51/kBT is the inverse
temperature andkB is Boltzmann’s constant@19#. If the in-
homogeneous fluid is in contact with the homogeneous b
fluid, its chemical potentialm i is equal to that of the homo
geneous bulk fluid. After some manipulations, the equil
rium particle density distribution function~or density profile
equation! r i(rW) is given by

r i~rW !5r i exp@2bui
ext~rW !1ci

~1!~rW;@rc ,rp# !

2ci
~1!~rc ,rp!# for i 5c,p, ~1!

wherer i denotes the homogeneous bulk density, andui
ext(rW)

is an external potential acting on speciess i @19,20#. In Eq.
~1!, ci

(1)(rW;@rc ,rp#) is the one-particle direct correlatio
function ~DCF! of the inhomogeneous colloid-polymer mix
ture, which is defined as

ci
~1!~rW;@rc ,rp# !52

dbFex@rc ,rp#

dr i~rW !
, ~2!

whereFex@rc ,rp# is the excess free energy functional of t
system, andci

(1)(rc ,rp) is the one-particle DCF of the ho
mogeneous colloid-polymer mixture.

Following Schmidt’s expression@11#, we assume an ex
cess free energy functionalFex@rc ,rp# such that

Fex@rc ,rp#5kBTE dsWF@na~sW !#. ~3!

whereF@na(sW)# is the excess free energy per volume. Th
the one-particle DCFci

(1)(rW;@rc ,rp#) is simply given, from
Eqs.~2! and ~3!, as

ci
~1!~rW;@rc ,rp# !52E dsW(

a

]F@ng~sW !#

]na~rW !
v i

~a!~ urW2sWu!,

~4!

where the system-averaged fundamental geometric mea
of the particlesna(rW) is given by

na~rW !5(
i 51

2 E dsWr i~sW !v i
~a!~ urW2sWu!. ~5!

v i
(a)(r ) are weight functions, and the excess free ene

F@na(rW)# per volume is assumed as

F@na~rW !#52n0~rW !ln@12n3~rW !#

1
n1~rW !n2~rW !2nW v1~rW !•nW v2~rW !

12n3~rW !

1
n2~rW !3@12„nW v2~rW !/n2~rW !…2#3

24p@12n3~rW !#2 . ~6!

Actually, the excess free energy function with the tenso
weight densities@7# can be introduced, which leads to sup
rior results in highly inhomogeneous situations such as
crystalline phase. However, we have chosen the
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fundamental-measure theory introduced by Schmidt to inv
tigate the structural properties of a colloid-polymer mixtu
because it yields very reasonable results for the struct
properties of a soft-sphere fluid. The set of weight functio
appeared in Eqs.~4! and~5! is related to the generating func
tion v i

(3)(r ) through

v i
~2!~r !52

]v i
~3!~r !

]r
, vW i

~v2!~rW !5v i
~2!~r !

rW

r
,

v i
~1!~r !5

v i
~2!~r !

4pr
, vW i

~v1!~rW !5v i
~1!~r !

rW

r
, ~7!

v i
~0!~r !5

v i
~1!~r !

r
,

wherev i
(3) , v i

(2) , v i
(1) , andv i

(0) are scalar quantities an
vW i

(v2) andvW i
(v1) are vectors. The generating weight functio

v i
(3)(r ) is determined by solving the deconvolution equatio

which is an integrodifferential equation@11#.
For the specific form of a intermolecular potential such

a colloidal hard sphere mixed with a star polymer, a sim
generating weight function can be obtained@11#. Following
the colloid-polymer model proposed by Schmidt, we choo
the pairwise potentials between colloidal hard-sphere
star polymer as follows:~i! The interaction between the sta
polymer bupp(r ) consists of a logarithmic potential fo
small distances,

bupp~r !55
22q ln~r /Rp!1 lnS 2q

q D , 0,r ,Rp

fq~r !1 lnS 2q
q D , Rp,r ,2Rp

0, 2Rp,r ,

~8!

where (q
2q) is the binomial coefficient, andq denotes the

softness of a star polymer. The crossover function betw
small and large distancesfq(r ) is given by

fq~r !52 ln@~11j!2q2jq11Bq 2F1~1,12q;21q;2j!#,

where j5(r /Rp)21, Bq52G(112q)G21(q)G21(21q),
and 2F1 is the hypergeometric function.~ii ! The hard sphere
interactionbucc(r ) has been assumed for the colloid-collo
interaction:

bucc~r !5`, 0,r ,Rc ,

50, 2Rc,r . ~9!

~iii ! The colloid-polymer interactionbucp(r ) is assumed to
have a hard core due to excluded volume induced by a
loid and an additional logarithmic repulsion:
7-2
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bucp~r !5`, r ,Rc ,

52q lnS r 2Rc

Rs
D , Rc,r ,Rc1Rp ,

50, otherwise. ~10!

Here note that the colloidal and polymer are simplified w
the central forces.

For the above intermolecular potentials@Eqs. ~8!–~10!#,
the generating weight functionvc

(3)(r ) for the colloidal hard-
sphere case@8# is identical to the pure hard-sphere case

vc
~3!~r !5u~Rc2r !, ~11!

where u(r ) is the Heaviside step function. The generati
weight functionvp

(3)(r ) for the polymer is given by

vp
~3!~r !512~r /Rp!q, 0,r ,Rp ,

50, otherwise, ~12!

whereq represents the softness of a polymer. In the limiq
→` the weight function@Eq. ~12!# approaches a step func
tion vp

(3)(r )5u(Rp2r ), and the potential becomes a ha
core with the radiusRp . Equations~7!, ~11!, and ~12! con-
stitute the set of weight functions for colloidal hard sphe
and star polymers.

For the homogeneous star polymer, the one-particle D
cp

(1)(rc ,rp) becomes, from Eqs.~4!, ~6!, and~7!,

cp
~1!~rc ,rp!5 ln~12n3!2

4pRp
3n0

12n3
F1

3
2

1

q13G
2

qRp

12n3
F n2

q11
1

4pRpn1

q12 G2
4pRp

3n1n2

~12n3!2

3F1

3
2

1

q13G2
Rp

2n2
2

2~12n3!2 F q

q12G
2

Rp
3n2

3

3~12n3!3 F1

3
2

1

q13G , ~13!

with

n05rc1rp , n15rcRc1
q

q11
rpRp ,

~14!

n254prcRc
21

4pq

q12
rpRp

2

and

n35
4p

3
rcRc

314pF1

3
2

1

q13GrpRp
3,

since rp(rW)5rp and rc(rW)5rc for the homogeneous
colloid-polymer mixture. Note here that the one-partic
DCF cp

(1)(rc ,rp) for the star polymer is a function of th
04150
s
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bulk densities of a star polymer as well as a colloidal ha
sphere. The one-particle DCFcc

(1)(rc ,rs), corresponding to
a colloidal hard sphere, becomes

cc
~1!~rc ,rs!5 ln~12n3!2

pRc
3n0

3~12n3!
2

Rc

12n3
Fn2

2
1

pRcn1

4 G
2

4pRc
3n1n2

3~12n3!22
Rc

2n2
2

2~12n3!22
Rc

3n2
3

9~12n3!3 .

~15!

The combined equations~1!, ~4!, ~13!, and~15! constitute the
density profile equation for an additive colloid-polymer mi
ture.

On the other hand, for an~additive! colloid-colloid mix-
ture the one-particle DCFci

(1)(r1 ,r2) @6# becomes

ci
~1!~r1 ,r2!5 ln~12n3!2

4pRi
3n0

3~12n3!
2

Rin2

12n3
2

4pRi
2n1

12n3

2
4pRi

3n1n2

3~12n3!22
Ri

2n2
2

2~12n3!2

2
Ri

3n2
3

9~12n3!3 for i 51,2, ~16!

with

n05(
i 51

2

r i , n15(
i 51

2

r iRi , n25(
i 51

2

4pr iRi
2,

n35(
i 51

2
4p

3
r iRi

3.

Many authors@6,17,18# showed that, for a confined colloid
colloid mixture, the fundamental-measure theory yields v
good results compared with the computer simulation.

For the ~additive! polymer-polymer mixture, the one
particle DCFci

(1)(r1 ,r2) becomes

ci
~1!~r1 ,r2!5 ln~12n3!24pF1

3
2

1

q13G Ri
3n0

~12n3!

2
qRin2

~q11!~12n3!
2

4pqRin1

~q12!~12n3!

24pF1

3
2

1

q13G Ri
3n1n2

~12n3!22
qRi

2n2
2

2~q12!~12n3!2

2F1

3
2

1

q13G Ri
3n2

3

3~12n3!3

for i 51 and 2, ~17!

with

n05(
i 51

2

r i , n15(
i 51

2
q

q11
r iRi ,
7-3
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n25(
i 51

2
4pq

q12
r iRi

2, n35(
i 51

2

4pF1

3
2

1

q13Gr iRi
3.

Note here that the polymer-polymer mixture was recen
extended to investigate the adsorption properties of confi
polydisperse soft-sphere fluid with the continuous parti
distribution @16#.

For the structureless hard slit pore, the external poten
bui

ext(z) is simply given as

bui
ext~z!50, Ri,z,L2Ri ,

5`, otherwise, ~18!

whereL andz are the width of the slit pore and distance fro
a hard slit wall, respectively. The maximum distances av
able to the center of a colloidal hard sphere or a star poly
areL2Ri . Then all quantities only depend on thez axis, but
not on x and y; r i(rW)5r i(z), and so on. The equilibrium
particle density distribution function@Eq. ~1!# becomes

r i~z!5r i exp†2bu1
ext~z!1ci

~1!~z;@rc ,rp# !2ci
~1!~rc ,rp!‡,

~19!

with

ci
~1!~z;@rc ,rp# !52pE

0

`

dR Rci
~1!~AR21z2;@rc ,rp# !.

~20!

III. RESULTS AND DISCUSSION

The equilibrium particle density distributionr i(z)s i
3 and

its corresponding local relative concentrationf i(z) for the
binary fluid mixtures are displayed in Fig. 1 as a function
the distance from a hard slit wall, where the packing fract

FIG. 1. ~a! Equilibrium particle density distributionr i(z)s3 for
the binary fluid mixtures confined in a slit pore withL58.0s, h
50.394, andx50.5; dotted lines represent a polymer-polymer m
ture ~q512 andsp /sp50.5!, dashed lines a colloid-polymer mix
ture~q512 andsc /sp50.5!, and solid lines a colloid-colloid~mix-
ture sc /sc50.5!. ~b! Local relative concentrationf i(z).
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h for the binary fluid mixture is given ash5pS i 51
2 r is i

3/6.
The particle diameters has been taken to be the unit of
length, and the bulk mole fractionx5r1 /S i 51

2 r i is 1/2. Ac-
tually, the size of a colloidal sphere is not large compared
that of a polymer. However, here we used a relatively sm
sphere for the colloidal particle to study the size effect
adsorption properties of a colloid-polymer mixture@21#. As
can be seen from Fig. 1~a!, the calculated equilibrium par
ticle density distribution strongly depends on the interm
lecular interaction between two particles. For the largeq
value, i.e., the strong repulsive interaction between the
polymers, a higher particle density distribution develop
near a slit pore; for the colloid-colloid mixture a higher pa
ticle density distribution can be found near a hard slit po
this is to be compared with the polymer-polymer mixtur
which has a soft-sphere interaction between two partic
An interesting fact is that, in a colloid-polymer mixture, th
particle density distribution for the polymer is lower com
pared with that for a colloidal hard sphere in a colloi
colloid mixture because of the softness of a polymer; ho
ever, the particle density distribution for a colloidal ha
sphere is almost the same as that in the colloid-colloid m
ture. These results suggest that in a colloid-polymer mixt
the equilibrium particle density distribution depends stron
on the softness of a star polymer. As for the equilibriu
particle density distribution, the distance between the t
peaks is also almost the same as the diameter of a star p
mer. In Fig. 1~b!, the local relative concentration or conce
tration profilef i(z) is displayed, which is defined as

f i~z!5
r i~z!

(
i 51

2

r i~z!

, ~21!

where the local relative concentration represents the effec
the local size segregation between particles of different s
cies@22#. It is expected that the strong local relative conce
tration is related to the large particle density difference
tween two particles. As can be seen from Fig. 1~b!, the
calculated local relative concentration shows the strong lo
size segregation with local cross correlation between p
ticles of different sizes around the bulk mole fractionx
51/2) in the relative amounts of small and large particl
Strong local size segregation near a slit pore was develo
for a colloid-colloid mixture with a strong repulsive intera
tion compared with that of a polymer-polymer mixture. Th
means that the large size selectivity in adsorption depend
the softness of a star polymer. The local relative concen
tion oscillates with a spatial peak close to the diameter o
star polymer with a large diameter, in the same way as
equilibrium particle density distribution does. In particula
Roth and Dietrich recently showed that for a colloid-collo
mixture near a hard wall the oscillatory behavior obtained
the fundamental-measure theory agrees excellently with
computer simulation@18#.

In Fig. 2 we show the calculated equilibrium particle de
sity distribution and its corresponding local relative conce
tration for binary fluid mixtures with different particle siz
7-4
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ratios. As can be seen from Fig. 2, the equilibrium parti
density distribution depends on the intermolecular poten
between two particles. Higher particle density distributio
are developed for the colloidal hard sphere, while lower p
ticle density distributions are found in a star polymer.
particular, the particle density distribution for a colloid
hard sphere in a colloid-colloid mixture is almost the same
that of a colloidal hard sphere in a colloid-polymer mixtur
For the small particle size ratio the effect of softness
smaller than that in the large particle size ratio. Howeve
comparison with Fig. 1 shows that the local size segrega
depends both on the particle size ratio and on the softnes
a star polymer. The local relative concentration oscilla
with a spatial peak close to the diameter of a large parti
as does the equilibrium particle density distribution.

The pore average mole fractionf i for the binary fluid
mixture is displayed in Fig. 3 as a function of the slit wid
L/s. Here the pore average mole fractionf i is defined as

f i5

E dzr i~z!

(
i 51

2 E dzr i~z!

, ~22!

and represents the size selectivity of a confined binary fl
mixture. For the binary fluid mixture, the adsorption of pa
ticles with a sizes i is preferred when the pore average mo
fractionf i is greater than12. For a large particle size ratio th
pore average mole fraction for a colloid-colloid mixture
larger than that for a polymer-polymer mixture. Howev
the pore average mole fraction for a colloid-colloid mixtu
is almost the same as that for a colloid-polymer mixture.
the other hand, for a small particle size ratio the pore aver
mole fraction for a colloid-polymer mixture is smaller tha
that for a polymer-polymer mixture. The pore average m
fraction for a polymer-polymer mixture is almost the same
that for a colloid-colloid mixture. The calculated results al

FIG. 2. Same as in Fig. 1; dotted lines represent a polym
polymer mixture~q512 andsp /sp52.0!, dashed lines a colloid-
polymer mixture~q512 andsc /sp52.0!, and solid lines a colloid-
colloid mixture (sc /sc52.0).
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show that for a small particle size ratio the pore avera
mole fraction is relatively smaller than that for a large pa
ticle size ratio. This means that the particle size selectiv
for a binary fluid mixture increases with increasing partic
size ratio in the mixture.

The calculated pore average mole fractions for three
ferent binary mixtures are shown in Fig. 4~a! as a function of
the star polymer diametersp , where the diameter of a col
loidal hard sphere is taken as the unit diametersc5s. As
can be seen from Figs. 3 and 4~a!, the pore average mole

r- FIG. 3. ~a! Pore average mole fractionf i for the binary fluid
mixture, whereh50.394 andx50.5; dotted lines represent
polymer-polymer mixture~q512 andsp /sp50.5!, dashed lines a
colloid-polymer mixture~q512 andsc /sp50.5!, and solid lines a
colloid-colloid mixture (sc /sc50.5). ~b! Same as in~a!; dotted
lines represent a polymer-polymer mixture~q512 and sp /sp

52.0!, dashed lines a colloid-polymer mixture~q512 andsc /sp

52.0!, and solid lines a colloid-colloid mixture (sc /sc52).

FIG. 4. ~a! Pore average mole fractionf i for the binary fluid
mixture, whereL54.0s, q55, x50.5, sc5s, and h50.4; the
dotted lines represent a polymer-polymer mixture, dashed line
colloid-polymer mixture, and solid lines a colloid-colloid mixture
~b! Pore average mole fraction for a colloid-polymer mixture w
the different softness, whereL54.0s, x50.5, sc5s, and h
50.4; dotted (q55), dashed (q515), and solid (q530) lines.
7-5
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fraction shows very different size selectivities depending
the diameter of a star polymer. For colloid-colloid an
polymer-polymer mixtures, the pore average mole fracti
decreases with the increasing diameter of a star polymer
to sp51, and again increases with increasingsp whensp is
greater than the unit of a diameter. At a large particle rat
the adsorption for a colloid-colloid mixture is larger than th
for a polymer-polymer mixture. However, one interestin
thing is that for the small particle size ratio the pore avera
mole fraction for a colloid-polymer mixture is smaller tha
that for a colloid-colloid mixture, but it increases with in
creasing particle size ratio and exceeds those of other bin
fluid mixtures. For a colloid-polymer mixture, the same po
average mole fractionfp5fc for a colloidal hard-sphere
and a star polymer has been found nearsp;0.75s, due to
the softness of a star polymer. The above result suggests
there seems to exist no direct relationship between the in
molecular potential and the pore average mole fraction of
binary fluid mixture. In Fig. 4~b!, the pore average mole
fraction for a colloid-polymer mixture with three differen
softnesses is displayed. As for a small particle size ratio
colloid-polymer mixture with a high-q value shows a large
pore average mole fraction, whereas for a large particle s
ratio a colloid-polymer mixture with a low-q value shows a
large pore average mole fraction. This means that the s
selectivity of a confined colloid-polymer mixture depend
not only on the particle size ratio, but also on the softness
a star polymer. In adsorption, the particle size depende
can be explained by the results of a competition between
Helmholz free energy and the chemical potential@20#. The
excess free energy increases when theq value of a star poly-
mer is increased. Then the excess free energy is more im
tant than the chemical potential. The larger the particle si
the higher the free energy. Thus the pore average mole f
tion for a colloid-polymer mixture increases with an increa
ing q value of a star polymer.

In Figs. 5 and 6, we show equilibrium particle densi
distributions for colloid-polymer mixtures with different siz

FIG. 5. ~a! Equilibrium particle density distribution for the
colloid-polymer mixture, whereL58.0s, h50.394, x50.5, and
q512; dotted (sp /sc52.0) and solid (sp /sc50.5) lines.~b! Lo-
cal relative concentrationf i(z).
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ratios sp /sc . The calculated result shows that the equilib
rium particle density distribution depends on the softness
a star polymer in a colloid-polymer mixture. The strong re
pulsive interaction causes a higher density development a
a strong local relative concentration near a hard wall. For
large polymer, the effect of softness is larger than that for
small polymer, and increases with an increasing particle si
ratio. The distance between two particle density distribution
depends on the diameter of a large particle, but not on
colloidal hard sphere and a star polymer. The calculated po
average mole fraction for colloid-polymer mixtures with dif-
ferent particle size ratios is shown in Fig. 7 as a function o
the slit pore widthL/s. The calculated results again show
that the softness of a star polymer affects the size selectiv
of a colloid-polymer mixture. With an increasing diameter o
a polymer, the pore average mole fraction increases. In t
case, the pore average mole fraction values for small or lar
particles result almost linearly with an increase in the po
size.

FIG. 6. Same as in Fig. 5~a!; dotted (sp /sc52.0) and solid
(sp /sc50.5) lines.

FIG. 7. ~a! Pore average mole fraction for the colloid-polyme
mixture, where h50.394, x50.5, and q512; dotted (sp /sc

50.5) and solid (sp /sc52.0) lines. ~b! same as in~a!; dotted
(sp /sc50.5) and solid (sp /sc52.0) lines.
7-6
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The calculated pore average mole fraction for a collo
polymer mixture withsp /sc51 is presented in Fig. 8 as a
function of the packing fractionh. In this case, the pole
average mole fraction for a star polymer is larger than th
for a colloidal hard-sphere. At a low bulk packing fraction
the pole average mole fraction approaches the bulk m
fraction x5 1

2 , and the softness of a star polymer does n
affect the pore average mole fraction. With an increas
bulk packing fraction, the pore average mole fraction for
colloid-polymer mixture with a low-q value rapidly increases
compared with colloid-polymer mixtures with a high-q
value. This result explains that a large size selectivity occ
at the low-q value and at a high bulk packing fraction. Th
kind of result can be seen in the adsorption of a polydispe
soft-sphere fluid confined in a structureless hard pore, wh
it has the continuous distribution of the particle diamete
@16#. The calculated pore average mole fraction for a collo
polymer mixture withsp /sc52 is presented in Fig. 9. As
can be seen from this figure, the pore average mole frac
for a large particle decreases with an increasing bulk pack
fraction; for a binary hard-sphere mixture confined in a ha
spherical pore, the pore average mole fraction for a la
particle increases with an increasing bulk packing fracti
@16#.

IV. CONCLUSIONS

We have employed the fundamental-measure theory
an additive binary fluid mixture to investigate the selecti
adsorption of binary fluid mixtures confined in a structur

FIG. 8. Pore average mole fractionf i for a colloid-polymer
mixture, whereL54.0s, x50.5, sc5sp , andh50.4; dotted (q
55), dashed (q515), and solid (q530) lines.
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less hard slit pore. The adsorption for a confined collo
polymer mixture is very different from that for colloid
colloid and polymer-polymer mixtures. For a fixed slit po
the equilibrium particle density distribution and local relati
concentration depend on the intermolecular interaction
tween two particles and the softness of a star polymer.
size selectivity of a confined colloid-polymer mixture d
pends not only on the particle size ratio but also on
softness of a star polymer. The calculated result suggests
there seem to exist no general relationship between the
average mole fraction for a binary fluid mixture and the
termolecular potential of the mixture. Here one interest
fact is that for the slit pore system the pore average m
fraction for a large particle decreases with an increasing b
packing fraction, whereas for a closed system such a
spherical cage the pore average mole fraction for a la
particle increases with an increasing bulk packing fracti
Actually, the adsorption behavior of an open system is v
different from that of a closed system such as a spher
pore, where the number of particlesN is fixed @16#. Another
interesting point is the effect of wall deformations on t
additive colloid-polymer mixture confined in a slit of de
formable walls @23#, and the phase separation in a s
polymer-colloid mixture @24#. We will investigate these
problems in the near future.
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FIG. 9. Pore average mole fractionf i for a colloid-polymer
mixture, where,L58.0s, x50.5, 2sc5sp , and h50.4; dotted
(q55), dashed (q515), and solid (q530) lines.
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